Identifying improved TSPO PET imaging probes through biomathematics: The impact of multiple TSPO binding sites in vivo

نویسندگان

  • Qi Guo
  • David R. Owen
  • Eugenii A. Rabiner
  • Federico E. Turkheimer
  • Roger N. Gunn
چکیده

To date, ¹¹C-(R)-PK11195 has been the most widely used TSPO PET imaging probe, although it suffers from high non-specific binding and low signal to noise. A significant number of 2nd generation TSPO radioligands have been developed with higher affinity and/or lower non-specific binding, however there is substantial inter-subject variation in their affinity for the TSPO. TSPO from human tissue samples binds 2nd generation TSPO radioligands with either high affinity (high affinity binders, HABs), or low affinity (LABs) or expresses both HAB and LAB binding sites (mixed affinity binders, MABs). The expression of these different TSPO binding sites in human is encoded by the rs6971 polymorphism in the TSPO gene. Here, we use a predictive biomathematical model to estimate the in vivo performances of three of these 2nd generation radioligands (¹⁸F-PBR111, ¹¹C-PBR28, ¹¹C-DPA713) and ¹¹C-(R)-PK11195 in humans. The biomathematical model only relies on in silico, in vitro and genetic data (polymorphism frequencies in different ethnic groups) to predict the radioactivity time course in vivo. In particular, we provide estimates of the performances of these ligands in within-subject (e.g. longitudinal studies) and between-subject (e.g. disease characterisation) PET studies, with and without knowledge of the TSPO binding class. This enables an assessment of the different radioligands prior to radiolabelling or acquisition of any in vivo data. The within-subject performance was characterised in terms of the reproducibility of the in vivo binding potential (%COV[BP(ND)]) for each separate TSPO binding class in normal and diseased states (50% to 400% increase in TSPO density), whilst the between-subject performance was characterised in terms of the number of subjects required to distinguish between different populations. The results indicated that the within-subject variability for ¹⁸F-PBR111, ¹¹C-PBR28 and ¹¹C-DPA713 (0.9% to 2.2%) was significantly lower than ¹¹C-(R)-PK11195 (16% to 36%) for HABs and MABs in both normal and diseased states. For between-subject studies, sample sizes required to detect 50% differences in TSPO density with the 2nd generation tracers are approximately half that required with ¹¹C-(R)-PK11195 when binding class information is known a priori. As binding class can be identified using a simple genetic test or from peripheral blood assays, the combination of binding class information with 2nd generation TSPO imaging data should provide superior tools to investigate inflammatory processes in humans in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging.

Astrocytes and microglia become reactive under most brain pathological conditions, making this neuroinflammation process a surrogate marker of neuronal dysfunction. Neuroinflammation is associated with increased levels of translocator protein 18 kDa (TSPO) and binding sites for TSPO ligands. Positron emission tomography (PET) imaging of TSPO is thus commonly used to monitor neuroinflammation in...

متن کامل

Translocator Protein-18 kDa (TSPO) Positron Emission Tomography (PET) Imaging and Its Clinical Impact in Neurodegenerative Diseases

In vivo exploration of activated microglia in neurodegenerative diseases is achievable by Positron Emission Tomography (PET) imaging, using dedicated radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO). In this review, we emphasized the major advances made over the last 20 years, thanks to TSPO PET imaging, to define the pathophysiological implication of microglia activation a...

متن کامل

The translocator protein.

The translocator protein (TSPO) is expressed at low levels in the healthy human brain and is markedly upregulated in response to brain injury and inflammation. This increase in TSPO expression is correlated to the extent of microglial activation, making the measurement of TSPO density a useful indicator of active brain disease. Several classes of TSPO radioligands have therefore been developed ...

متن کامل

[18F]FEBMP: Positron Emission Tomography Imaging of TSPO in a Model of Neuroinflammation in Rats, and in vitro Autoradiograms of the Human Brain

We evaluated the efficacy of 2-[5-(4-[(18)F]fluoroethoxy-2-oxo-1,3-benzoxazol-3(2H)-yl)-N-methyl-N-phenylacetamide] ([(18)F]FEBMP) for positron emission tomography (PET) imaging of translocator protein (18 kDa, TSPO). Dissection was used to determine the distribution of [(18)F]FEBMP in mice, while small-animal PET and metabolite analysis were used for a rat model of focal cerebral ischemia. [(1...

متن کامل

Imaging neuroinflammation in multiple sclerosis using TSPO-PET

Conventional MR imaging (MRI) techniques form the cornerstone of multiple sclerosis (MS) diagnostics and clinical follow-up today. MRI is sensitive in demonstrating focal inflammatory lesions and diffuse atrophy. However, especially in progressive MS, there is increasingly widespread diffuse pathology also outside the plaques, often related to microglial activation and neurodegeneration. This c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2012